Comparison of low-complexity fall detection algorithms for body attached accelerometers.
نویسندگان
چکیده
The elderly population is growing rapidly. Fall related injuries are a central problem for this population. Elderly people desire to live at home, and thus, new technologies, such as automated fall detectors, are needed to support their independence and security. The aim of this study was to evaluate different low-complexity fall detection algorithms, using triaxial accelerometers attached at the waist, wrist, and head. The fall data were obtained from standardized types of intentional falls (forward, backward, and lateral) in three middle-aged subjects. Data from activities of daily living were used as reference. Three different detection algorithms with increasing complexity were investigated using two or more of the following phases of a fall event: beginning of the fall, falling velocity, fall impact, and posture after the fall. The results indicated that fall detection using a triaxial accelerometer worn at the waist or head is efficient, even with quite simple threshold-based algorithms, with a sensitivity of 97-98% and specificity of 100%. The most sensitive acceleration parameters in these algorithms appeared to be the resultant signal with no high-pass filtering, and the calculated vertical acceleration. In this study, the wrist did not appear to be an applicable site for fall detection. Since a head worn device includes limitations concerning usability and acceptance, a waist worn accelerometer, using an algorithm that recognizes the impact and the posture after the fall, might be optimal for fall detection.
منابع مشابه
A comparison of public datasets for acceleration-based fall detection.
Falls are one of the leading causes of mortality among the older population, being the rapid detection of a fall a key factor to mitigate its main adverse health consequences. In this context, several authors have conducted studies on acceleration-based fall detection using external accelerometers or smartphones. The published detection rates are diverse, sometimes close to a perfect detector. ...
متن کاملThe MobiFall Dataset: Fall Detection and Classification with a Smartphone
Fall detection is receiving significant attention in the field of preventive medicine, wellness management and assisted living, especially for the elderly. As a result, several fall detection systems are reported in the research literature or exist as commercial systems. Most of them use accelerometers and/ or gyroscopes attached on a person’s body as the primary signal sources. These systems u...
متن کاملDetecting Falls with Location Sensors and Accelerometers
Due to the rapid aging of the population, many technical solutions for the care of the elderly are being developed, often involving fall detection with accelerometers. We present a novel approach to fall detection with location sensors. In our application, a user wears up to four tags on the body whose locations are detected with radio sensors. This makes it possible to recognize the user’s act...
متن کاملPatient Fall Detection using Support Vector Machines
This paper presents a novel implementation of a patient fall detection system that may be used for patient activity recognition and emergency treatment. Sensors equipped with accelerometers are attached on the body of the patients and transmit patient movement data wirelessly to the monitoring unit. The methodology of support Vector Machines is used for precise classification of the acquired da...
متن کاملRAReFall - Real-time activity recognition and fall detection system
This demo paper presents the RAReFall system, which is a real-time activity recognition and fall detection system. It is tuned for robustness and real-time performance by combining human-understandable rules and classifiers trained with machine learning algorithms. The system consists of two wearable accelerometers sewn into elastic sports-wear, placed on the abdomen and the right thigh. The re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Gait & posture
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2008